中化新网讯 仅通过一段储罐火灾视频,就能对储罐火灾内部温度和外部热辐射强度等参数进行智能预测并及时发出警报。近日,南京工业大学安全科学与工程学院张文豪、熊俊杰等同学完成的《基于深度学习的储罐火灾热危害智能预测预警系统》实现了这一愿景,并在第9届全国高校安全科学与工程大学生实践与创新作品大赛中获得一等奖。
该项目团队对缩尺寸储罐火灾进行模拟,利用深度学习实现火场温度和热辐射强度的实时智能预测,并基于预测结果,结合硬件设备及时进行风险播报,实现智能预警。“我们设计的这个系统主要包括4个部分,即Pyrosim火灾模拟及实验验证、深度学习建模和训练、声光报警装置、软硬件结合与结果可视化。”张文豪介绍道。
项目团队调研了中国石化扬子石油化工有限公司的储罐数据,并运用一款火灾动力学模拟软件PyroSim构建1/20缩尺寸储罐模型,对不同情况下的油池火燃烧开展仿真模拟研究,通过改变油池火源直径和间距等边界条件,获得大量的模拟数据。
为了验证模拟结果的可靠性,项目团队开展了小尺寸油池火实验,对单油池和不同间距的双油池火燃烧行为和辐射特性进行实验研究,获得火焰高度、振荡频率、火焰辐射热流等数据,并与模拟数据进行对比分析后,调整相关参数,获得最优化的模拟结果。“获得模拟结果后,我们用Python软件编写程序,对火灾模拟结果进行插值批量处理,获得指定时间间隔的特征参数。”团队成员袁启哲说道。
“深度学习是机器学习领域中的一个研究方向,我们基于Keras深度学习框架搭建由输入层、隐藏层、输出层组成的多层感知机。”团队成员麻帅表示,多层感知机是一种前馈人工神经网络模型,由多个神经元层组成,每个神经元层又由许多神经元组成,其中输入层接收输入特征,输出层给出最终的预测结果,中间的隐藏层用于提取特征和进行非线性变换。
“比如,我们对时间—温度、距离—热辐射强度分别建立预测模型,并使用22组对应数据进行训练,得到对应预测模型。然后,又使用4组测试数据进行验证,对比了预测与实际结果,该模型预测的精准度达到了91%,结果比较可靠。”张文豪说道。
此外,项目团队还设计了预测结果可视化界面,用户可以自定义设置火源大小、火源间距,直观地看到火焰的升温曲线以及热辐射强度曲线,以便更快速地预测预警。当热辐射预测值超过设置的临界热辐射强度时,声光报警装置就会亮灯并启动语音播报,给管理者采取应急救援措施和疏散人员提供参考。
5月22日,教育部公示了拟同意设置本科高等学校名单,共有32所学校,其中包括吉林化工学院更名为吉林化工大学。公示时间为2025年5月22日至5月28日。吉林化工学院官网显示,学校坐落在北国江城吉林市....
一大早,王海娟刚在工位上落座,河南油田工程院钻完井研究所固井技术组的吕倩菲就跑来向她请教:“渭北油田浅层水平井位垂比3.56,套管怎么下入?水平段只有30摄氏度,如何保证固井质量?” “这种类...
近日,中原油田采油气工程服务中心自主研发的新型液压抽油杆剪切装置在中原油田文卫采油厂明493井完成现场试验,仅用4小时就完成了80根玻璃钢抽油杆的切割作业,效率达到传统剪断钳的20倍。
5月的北京阳光和煦,北京化工大学2025年校园开放日如约而至。踏入昌平校区,现代化的教学楼群间,智慧教学的生动图景徐徐铺展:星罗棋布的智慧教室、跨越校区实时互动的“云课堂”,还有将现代化工业装置“...
近日,潞安化工丰喜集团临猗分公司空分车间为自洁式过滤器外围增加防灰网,大幅降低自洁式过滤器滤筒更换频次,预计年可节省滤筒成本7万元。